Augmentation of abscisic acid (ABA) levels by drought does not induce short-term stomatal sensitivity to CO2 in two divergent conifer species
نویسندگان
چکیده
The stomata of conifers display very little short-term response to changes in atmospheric CO(2) concentration (C(a)), whereas the stomatal responses of angiosperms to C(a) increase in response to water stress. This behaviour of angiosperm stomata appears to be dependent on foliar levels of abscisic acid (ABA(f)). Here two alternative explanations for the stomatal insensitivity of conifers to C(a) are tested: that conifers have either low ABA(f) or a higher or absent threshold for ABA-induced sensitivity. The responsiveness of stomatal conductance (g(s)) to a sequence of transitions in C(a) (386, 100, and 600 μmol mol(-1)) was recorded over a range of ABA(f) in an angiosperm and two divergent conifer species. The different ABA levels were induced by a mild drought cycle. Although the angiosperm and conifer species showed similar proportional increases in ABA(f) following drought, conifer stomata remained insensitive to changes in C(a) whereas angiosperm stomata showed enhanced sensitivity with increasing ABA(f). The conifers, however, had much higher ABA(f) prior to drought than the angiosperm species, suggesting that non-sensitivity to C(a) in these conifers was due to an absent or inactive response/signalling pathway rather than insufficient ABA(f).
منابع مشابه
Abscisic Acid Mediates a Divergence in the Drought Response of Two Conifers1[W][OA]
During water stress, stomatal closure occurs as water tension and levels of abscisic acid (ABA) increase in the leaf, but the interaction between these two drivers of stomatal aperture is poorly understood. We investigate the dynamics of water potential, ABA, and stomatal conductance during the imposition of water stress on two drought-tolerant conifer species with contrasting stomatal behavior...
متن کاملAbscisic acid mediates a divergence in the drought response of two conifers.
During water stress, stomatal closure occurs as water tension and levels of abscisic acid (ABA) increase in the leaf, but the interaction between these two drivers of stomatal aperture is poorly understood. We investigate the dynamics of water potential, ABA, and stomatal conductance during the imposition of water stress on two drought-tolerant conifer species with contrasting stomatal behavior...
متن کاملConifer species adapt to low-rainfall climates by following one of two divergent pathways.
Water stress is one of the primary selective forces in plant evolution. There are characters often cited as adaptations to water stress, but links between the function of these traits and adaptation to drying climates are tenuous. Here we combine distributional, climatic, and physiological evidence from 42 species of conifers to show that the evolution of drought resistance follows two distinct...
متن کاملCanopy stomatal conductance and xylem sap abscisic acid (ABA) in mature Scots pine during a gradually imposed drought.
We investigated the effect of drought on canopy stomatal conductance (g(c)), and examined the hypothesis that g(c) is controlled by the chemical messenger abscisic acid (ABA) produced in roots. Beginning in November 1994, we subjected a mature stand of Scots pine (Pinus sylvestris L.) to an imposed 11-month drought. Control plots were maintained at average-season soil water content. Xylem sap w...
متن کاملDevelopmental Priming of Stomatal Sensitivity to Abscisic Acid by Leaf Microclimate
Plant water loss and CO2 uptake are controlled by valve-like structures on the leaf surface known as stomata. Stomatal aperture is regulated by hormonal and environmental signals. We show here that stomatal sensitivity to the drought hormone abscisic acid (ABA) is acquired during leaf development by exposure to an increasingly dryer atmosphere in the rosette plant Arabidopsis. Young leaves, whi...
متن کامل